

Permission to Speak: A Novel Formal Foundation for Access Control

Oleg Sokolsky Nikhil Dinesh, Insup Lee, Aravind Joshi

Outline

- Motivation
 - Distributed, multi-authority access control
 - Compliance checking and blame assignment
- Formal representation
 - Delegation and obligation
 - Permission as provability
- Access control and conformance checking
 - System architecture
- Summary

Motivation and problem statement

- Main problem of access control:
 - Should a request for service be granted?
- In a distributed system with multiple authorities:
 - Which policies need to be consulted?
 - Which policies are violated and who is to blame?

Delegation and obligation

- "saying" is a common operator in access control logics
 - Captures both policy and credential introduction
 - Policies are typically obligations and credentials are typically permissions
 - Obligations and permissions are often implicit and must be deduced by the checker
- Explicit permissions and obligations
 - Deontic operators $P_A \phi$, $O_A \phi$

L_{PS}:logic and policies

- L_{PS} is a decidable logic with complete semantics
- Key formal device: axiom of representation

$$(says_{l(A)}(P_Bsays_{l(B)}\varphi) \land says_{l(B)}\varphi) \Rightarrow says_{l(A)}\varphi$$

A policy is a collection of sequents

$$(id)\varphi\mapsto\psi$$

- True preconditions must have true postconditions
- Postconditions make more preconditions true

Contributions to science

- Uniform treatment of access control and conformance
 - Access control is verification of permissions
 - Conformance is satisfaction of obligations
 - Both are formalized as provability of statements in the logic
- Clarified semantics of deontic modalities
 - Nested permissions and obligations
 - Positive and negative permissions

Nested deontic modalities

- Parents (A) should not let their children (B) play by the road
 - Multiple possible interpretations:
 - A should not give B permission to play (positive permission)
 - A should tell B not to play (negative permission)
 - A should physically prevent B from playing
 - Each interpretation make sense in some context
- Alternation with saying solves the problem
 - "require to allow" becomes "require to make a rule..."
 - $O_A \left(\neg says_{l(A)} P_B play_{road} (B) \right)$
 - $O_A(says_{l(A)}O_B \neg play_{road}(B))$

System architecture

- Principals introduce laws
- Logic programming engine computes utterances, ground saying terms
- Request is granted if utterances contain a permission for it

Future work: quantitative evaluation

- L_{PS} can be used as an alternative to Keynote in the QuanTM architecture
- A tighter integration with the reputation manager will be more efficient
- Quantitative semantics for L_{PS} will combine TDG construction and evaluation
 - Supported by the logic programming framework of L_{PS}
 - Similar to probabilistic Datalog semantics

